Metabolic regulation in tylosin-producing Streptomyces fradiae: phosphate control of tylosin biosynthesis

Author:

Vu-Trong K,Bhuwapathanapun S,Gray P P

Abstract

The effects of increased concentration of inorganic phosphate on the biosynthesis of tylosin, the level of the intracellular adenylates, the energy charge, and the activities of enzymes involved in the synthesis of tylonolide precursors were studied in Streptomyces fradiae NRRL 2702. No metabolic response was observed when elevated levels of inorganic phosphate were added in idiophase. Increased initial levels of inorganic phosphate suppressed tylosin production and markedly increased the levels of the adenylates, although the adenylate energy charge was unchanged. Higher growth and glucose uptake rates were also observed. The activities of methylmalonyl-coenzyme A carboxyltransferase (EC 2.1.3.1) and propionyl-coenzyme A carboxylase (EC 6.4.1.3) were suppressed by the increased concentration of inorganic phosphate. The results indicated that the rate of tylosin synthesis was inversely related to the absolute level of the adenylates rather than to the energy charge.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference13 articles.

1. Production of the macrolide antibiotic tylosin in batch and chemostat cultures;Bhuwapathanapun S.;Biotechnol. Bioeng.,1980

2. Regulation and biosynthesis of secondary metabolites. XVIII. Adenylate level and chlorotetracycline production in Streptomyces aureofaciens;Curdova E.;Folia Microbiol.,1976

3. Metabolism of Streptomyces aureofaciens and biosynthesis of chlortetracycine;Di Marco A.;G. Microbiol.,1956

4. Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis;Hostalek Z.;Folia Microbiol.,1964

5. Factors affecting the production of candicidin;Uu C. M.;Antimicrob. Agents Chemother.,1975

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3