Redox-active antibiotics enhance phosphorus bioavailability

Author:

McRose Darcy L.12ORCID,Newman Dianne K.12ORCID

Affiliation:

1. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

Abstract

Phenazines liberate phosphate Bacteria secrete a wide range of small molecules with chemical reactivity that offers multiple functions in different contexts. Phenazines are commonly considered to be antibiotics, but they can also participate in environmental redox reactions, especially with iron. McRose and Newman found that phenazines, when added exogenously or made by bacteria in situ, can liberate phosphorous (P) in the form of phosphate from mineral surfaces, and that the production of these molecules is regulated by signaling pathways that respond to P limitation. Strains unable to produce these molecules grew more slowly under P limitation but could be rescued by the addition of exogenous phenazines. The authors hypothesize that reductive dissolution of iron oxides has the benefit of liberating P, and that this could be one mechanism of microbial P acquisition in some environments. Science , this issue p. 1033

Funder

National Institutes of Health

Simons Foundation

U.S. Army Research Laboratory

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3