Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients

Author:

Modongo Chawangwa,Pasipanodya Jotam G.,Zetola Nicola M.,Williams Scott M.,Sirugo Giorgio,Gumbo Tawanda

Abstract

ABSTRACTAminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3