Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis

Author:

Tilanus Alwin1,Drusano George2

Affiliation:

1. Department of Infectious Diseases, Clinica Los Nogales, Calle 95 # 23-61, Bogota 110221, Colombia

2. Institute for Therapeutic Innovation, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA

Abstract

Certain classes of antibiotics show “concentration dependent” antimicrobial activity; higher concentrations result in increased bacterial killing rates, in contrast to “time dependent antibiotics”, which show antimicrobial activity that depends on the time that antibiotic concentrations remain above the MIC. Aminoglycosides and fluoroquinolones are still widely used concentration-dependent antibiotics. These antibiotics are not hydrolyzed by beta-lactamases and are less sensitive to the inoculum effect, which can be defined as an increased MIC for the antibiotic in the presence of a relatively higher bacterial load (inoculum). In addition, they possess a relatively long Post-Antibiotic Effect (PAE), which can be defined as the absence of bacterial growth when antibiotic concentrations fall below the MIC. These characteristics make them interesting complementary antibiotics in the management of Multi-Drug Resistant (MDR) bacteria and/or (neutropenic) patients with severe sepsis. Global surveillance studies have shown that up to 90% of MDR Gram-negative bacteria still remain susceptible to aminoglycosides, depending on the susceptibility breakpoint (e.g., CLSI or EUCAST) being applied. This percentage is notably lower for fluoroquinolones but depends on the region, type of organism, and mechanism of resistance involved. Daily (high-dose) dosing of aminoglycosides for less than one week has been associated with significantly less nephro/oto toxicity and improved target attainment. Furthermore, higher-than-conventional dosing of fluoroquinolones has been linked to improved clinical outcomes. Beta-lactam antibiotics are the recommended backbone of therapy for severe sepsis. Since these antibiotics are time-dependent, the addition of a second concentration-dependent antibiotic could serve to quickly lower the bacterial inoculum, create PAE, and reduce Penicillin-Binding Protein (PBP) expression. Inadequate antibiotic levels at the site of infection, especially in the presence of high inoculum infections, have been shown to be important risk factors for inadequate resistance suppression and therapeutic failure. Therefore, in the early phase of severe sepsis, effort should be made to optimize the dose and quickly lower the inoculum. In this article, the authors propose a novel concept of “Inoculum Based Dosing” in which the decision for antibiotic dosing regimens and/or combination therapy is not only based on the PK parameters of the patient, but also on the presumed inoculum size. Once the inoculum has been lowered, indirectly reflected by clinical improvement, treatment simplification should be considered to further treat the infection.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3