Differential Lipopolysaccharide Core Capping Leads to Quantitative and Correlated Modifications of Mechanical and Structural Properties in Pseudomonas aeruginosa Biofilms

Author:

Lau Peter C. Y.12,Lindhout Theresa2,Beveridge Terry J.12,Dutcher John R.13,Lam Joseph S.12

Affiliation:

1. Biophysics Interdepartmental Group

2. Department of Molecular and Cellular Biology

3. Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

ABSTRACT Bacterial biofilms are responsible for the majority of all microbial infections and have profound impact on industrial and geochemical processes. While many studies documented phenotypic differentiation and gene regulation of biofilms, the importance of their structural and mechanical properties is poorly understood. Here we investigate how changes in lipopolysaccharide (LPS) core capping in Pseudomonas aeruginosa affect biofilm structure through modification of adhesive, cohesive, and viscoelastic properties at an early stage of biofilm development. Microbead force spectroscopy and atomic force microscopy were used to characterize P. aeruginosa biofilm interactions with either glass substrata or bacterial lawns. Using isogenic migA , wapR , and rmlC mutants with defined LPS characteristics, we observed significant changes in cell mechanical properties among these strains compared to wild-type strain PAO1. Specifically, truncation of core oligosaccharides enhanced both adhesive and cohesive forces by up to 10-fold, whereas changes in instantaneous elasticity were correlated with the presence of O antigen. Using confocal laser scanning microscopy to quantify biofilm structural changes with respect to differences in LPS core capping, we observed that textural parameters varied with adhesion or the inverse of cohesion, while areal and volumetric parameters were linked to adhesion, cohesion, or the balance between them. In conclusion, this report demonstrated for the first time that changes in LPS expression resulted in quantifiable cellular mechanical changes that were correlated with structural changes in bacterial biofilms. Thus, the interplay between architectural and functional properties may be an important contributor to bacterial community survival.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3