Affiliation:
1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, People's Republic of China
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
Abstract
ABSTRACT
Vaccine development for severe acute respiratory syndrome coronavirus (SARS-CoV) has mainly focused on the spike (S) protein. However, the variation of the S gene between viruses may affect the efficacy of a vaccine, particularly for cross-protection against SARS-like CoV (SL-CoV). Recently, a more conserved group-specific open reading frame (ORF), the 3a gene, was found in both SARS-CoV and SL-CoV. Here, we studied the immunogenicity of human SARS-CoV 3a and bat SL-CoV 3a DNA vaccines in mice through electroporation immunization followed by enzyme-linked immunosorbent, enzyme-linked immunospot, and flow cytometry assays. Our results showed that high levels of specific humoral responses were induced by SARS-CoV 3a and SL-CoV 3a DNA vaccines. Furthermore, a strong Th1-based cellular immune response was stimulated by both DNA vaccines. The vaccines stimulated gamma interferon production mainly by CD8
+
T cells and interleukin-2 (IL-2) mainly by CD4
+
T cells. Of interest, the frequency of IL-2-positive cells elicited by the SARS-CoV 3a DNA vaccine was significantly higher than that elicited by the SL-CoV 3a DNA vaccine. In summary, our study provides a reference for designing cross-protective DNA vaccines based on the group-specific ORFs of CoVs.
Publisher
American Society for Microbiology
Subject
Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献