Transformation by the oncogenic latent membrane protein correlates with its rapid turnover, membrane localization, and cytoskeletal association

Author:

Martin J1,Sugden B1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706.

Abstract

The latent membrane protein (LMP) of Epstein-Barr virus (EBV) has a short half-life (V. R. Baichwal and B. Sugden, J. Virol, 61:866-875, 1987; K.P. Mann and D. Thorley-Lawson, J. Virol, 61:2100-2108, 1987), is localized in patches in the membrane (D. Liebowitz, D. Wang, and E, Kieff, J. Virol, 58:233-237, 1986), and associates with the cytoskeleton in EBV-immortalized B lymphocytes (D. Liebowitz, R. Kopan, E. Fuchs, J. Sample, and E. Kieff, Mol. Cell. Biol. 7:2299-2308, 1987; K. P. Mann and D. Thorley-Lawson, J. Virol. 61:2100-2108, 1987). Deletion mutants of LMP that are either positive or negative in the induction both of anchorage-independent growth of BALB/c 3T3 cells (V. R. Baichwal and B. Sugden, Oncogene 4:67-74, 1989) and of cytotoxicity in a variety of cells (W. Hammerschmidt, B. Sugden, and V. R. Baichwal, J. Virol. 63:2469-2475, 1989) have been studied to identify the biochemical properties of this protein that correlate with its effects on cell growth. Mutant LMP proteins that are metabolically stable, do not associate with the cytoskeleton, and exhibit a diffuse plasma membrane localization also do not induce anchorage-independent growth in rodent cells or cytotoxicity in B lymphoblastoid cells. In contrast, a mutant of LMP that is functionally identical to the wild-type protein has a half-life, membrane localization, and cytoskeletal association similar or identical to those of LMP. These results are consistent with the hypothesis that LMP's rapid turnover, association with the cytoskeleton, and patching in the membrane are required for it to affect cell growth.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference33 articles.

1. Posttranslational processing of an Epstein-Barr virus-encoded membrane protein expressed in cells transformed by Epstein-Barr virus;Baichwal V. R.;J. Virol.,1987

2. Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein-Barr virus;Baichwal V. R.;Oncogene,1988

3. The multiple membranespanning segments of the BNLF-1 oncogene from Epstein-Barr virus are required for transformation;Baichwal V. R.;Oncogene,1989

4. DNA sequence analysis of the EcoRI Dhet fragment of B95-8 Epstein-Barr virus containing the terminal repeat sequences;Bankier A. T.;Mol. Biol. Med.,1983

5. Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation;Dawson C. W.;Nature (London),1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3