Optimized Viral Dose and Transient Immunosuppression Enable Herpes Simplex Virus ICP0-Null Mutants To Establish Wild-Type Levels of Latency In Vivo

Author:

Halford William P.1,Schaffer Priscilla A.1

Affiliation:

1. Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076

Abstract

ABSTRACT The reduced efficiency with which herpes simplex virus type 1 (HSV-1) mutants establish latent infections in vivo has been a fundamental obstacle in efforts to determine the roles of individual viral genes in HSV-1 reactivation. For example, in the absence of the “nonessential” viral immediate-early protein, ICP0, HSV-1 is severely impaired in its ability to (i) replicate at the site of inoculation and (ii) establish latency in neurons of the peripheral nervous system. The mouse ocular model of HSV latency was used in the present study to determine if the conditions of infection can be manipulated such that replication-impaired, ICP0-null mutants establish wild-type levels of latency, as measured by viral genome loads in latently infected trigeminal ganglia (TG). To this end, the effects of inoculum size and transient immunosuppression on the levels of acute replication in mouse eyes and of viral DNA in latently infected TG were examined. Following inoculation of mice with 2 × 10 3 , 2 × 10 4 , 2 × 10 5 , or 2 × 10 6 PFU/eye, wild-type virus replicated in mouse eyes and established latency in TG with similar efficiencies at all four doses. In contrast, increasing the inoculum size of the ICP0-null mutants n212 and 7134 from 2 × 10 5 to 2 × 10 6 PFU/eye significantly decreased the levels of infectious virus detected in the tear films of mice from days 4 to 9 postinfection. In an attempt to establish the biological basis for this finding, the effect of viral dose on the induction of the host proinflammatory response was examined. Quantitative reverse transcription-PCR demonstrated that increasing the inoculum of 7134 from 2 × 10 4 to 2 × 10 6 PFU/eye significantly increased the expression of proinflammatory (interleukin 6), cell adhesion (intercellular adhesion molecule 1), and phagocyte-associated (CD11b) genes in mouse eyes 24 h postinfection. Furthermore, transient immunosuppression of mice with cyclophosphamide, but not cyclosporin A, significantly enhanced both the levels of acute n212 and 7134 replication in the eye and the levels of mutant viral genomes present in latently infected TG in a dose-dependent manner. Thus, the results of this study demonstrate that acute replication in the eye and the number of ICP0-null mutant genomes in latently infected TG can be increased to wild-type levels for both n212 and 7134 by (i) optimization of inoculum size and (ii) transient immunosuppression with cyclophosphamide.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3