Characterization of a Major Histocompatibility Complex Class II X-Box-Binding Protein Enhancing Tat-Induced Transcription Directed by the Human Immunodeficiency Virus Type 1 Long Terminal Repeat

Author:

Mischiati Carlo1,Feriotto Giordana2,Borgatti Monica1,Giacomini Patrizio3,Gambari Roberto12

Affiliation:

1. Department of Biochemistry and Molecular Biology1 and

2. Biotechnology Center,2 University of Ferrara, Ferrara, and

3. Immunology Laboratory, Regina Elena Cancer Institute, Rome,3 Italy

Abstract

ABSTRACT The X-box element present within the promoter region of genes belonging to the major histocompatibility complex (MHC) plays a pivotal role in the expression of class II molecules, since it contains the binding sites for several well-characterized transcription factors. We have analyzed a randomly selected compilation of viral genomes for the presence of elements homologous to the X box of the HLA-DRA gene. We found that human immunodeficiency virus type 1 (HIV-1) shows the highest frequency of X-like box elements per 1,000 bases of genome. Within the HIV-1 genome, we found an X-like motif in the TAR region of the HIV-1 long terminal repeat (LTR), a regulative region playing a pivotal role in Tat-induced HIV-1 transcription. The use of a decoy approach for nuclear proteins binding to this element, namely, XMAS (X-like motif activator sequence), performed by transfection of multiple copies of this sequence into cells carrying an integrated LTR-chloramphenicol acetyltransferase construct, suggests that this element binds to nuclear proteins that enhance Tat-induced transcription. In this report we have characterized two proteins, one binding to the XMAS motif and the other to the flanking regions of XMAS. Mobility shift assays performed on crude nuclear extracts or enriched fractions suggest that similar proteins bind to XMAS from HIV-1 and the X box of the HLA-DRA gene. Furthermore, a UV cross-linking assay suggests that one protein of 47 kDa, termed FAX (factor associated with XMAS)-1, binds to the XMAS of HIV-1. The other protein of 56 kDa was termed FAX-2. In a decoy ex vivo experiment, it was found that sequences recognizing both proteins are required to inhibit Tat-induced HIV-1 LTR-driven transcription. Taken together, the data reported in this paper suggest that XMAS and nearby sequences modulate Tat-induced HIV-1 transcription by binding to the X-box-binding proteins FAX-1 and FAX-2. The sequence homology between XMAS and X box is reflected in binding of a common protein, FAX-1, and similar functional roles in gene expression. To our knowledge, this is the first report showing that transcription factors binding to the X box of the MHC class II genes enhance the transcription of HIV-1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3