Direct Microscopic Quantification of Dynamics of Plasmodium berghei Sporozoite Transmission from Mosquitoes to Mice

Author:

Jin Yamei1,Kebaier Chahnaz1,Vanderberg Jerome1

Affiliation:

1. Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, New York 10010

Abstract

ABSTRACT The number of malaria sporozoites delivered to a host by mosquitoes is thought to have a significant influence on the subsequent course of the infection in the mammalian host. We did studies with Anopheles stephensi mosquitoes with salivary gland infections of Plasmodium berghei sporozoites expressing a red fluorescent protein. After individual mosquitoes fed on an ear pinna or the ventral abdomen of a mouse, fluorescence microscopy was used to count numbers of sporozoites. Mosquitoes allowed to feed on the ear for periods of 3 versus 15 min deposited means of 281 versus 452 sporozoites, respectively, into the skin; this may have epidemiological implications because mosquitoes can feed for longer periods of time on sleeping hosts. Mosquitoes feeding on the ventral abdomen injected sporozoites not only into the skin but also into the underlying peritoneal musculature. Although mosquitoes injected fewer sporozoites into the abdominal tissues, more of these were reingested into the mosquito midgut, probably a consequence of easier access to blood intake from the abdominal area. The most consistent parameter of sporozoite transmission dynamics under all conditions of mosquito probing and feeding was the relatively slow release rate of sporozoites (∼1 to 2.5 per second) from the mosquito proboscis. The numbers of sporozoites introduced into the host by mosquitoes and the transmission efficiencies of sporozoite delivery are multifactorial phenomena that vary with length of probing time, skin site being fed upon, and numbers of sporozoites within the salivary glands.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3