The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine

Author:

Mileykovskaya E1,Dowhan W1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Texas Houston-Medical School, 77225, USA.

Abstract

The CpxA-CpxR two-component signal transduction pathway of Escherichia coli was studied in a mutant (pss-93) lacking phosphatidylethanolamine (PE). Several properties of this mutant are comparable to phenotypes of cpxA point mutants, indicating that this two-component pathway is activated in PE-deficient cells. In contrast to point mutants, cpx operon null mutants have a wild-type phenotype. By use of this information, a cpx operon null allele was introduced into a pss-93 mutant. Certain altered properties of PE-deficient mutants, which were consistent with activation of the Cpx pathway, returned to the wild-type phenotype, namely, active accumulation of proline and thiomethyl-beta-D-galactopyranoside was partially restored to wild-type levels, increased resistance to amikacin returned to wild-type sensitivity, and high levels of degP expression returned to repressed wild-type levels. Elevated levels of acetyl phosphate and nlpE gene product can result in activation of the Cpx pathway. However, inactivation of the nlpE gene or mutations eliminating the ability to make acetyl phosphate did not alter the high level of degP expression in pss-93 mutants. We propose that the lack of PE results in an alteration in cell envelope structure or physical properties, leading to direct activation of the Cpx pathway.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3