Iron-Dependent RNA-Binding Activity of Mycobacterium tuberculosis Aconitase

Author:

Banerjee Sharmistha12,Nandyala Ashok Kumar1,Raviprasad Podili1,Ahmed Niyaz1,Hasnain Seyed E.123

Affiliation:

1. Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500076, India

2. University of Hyderabad, Hyderabad 500046, India

3. Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560012, India

Abstract

ABSTRACT Cellular iron levels are closely monitored by iron regulatory and sensor proteins of Mycobacterium tuberculosis for survival inside macrophages. One such class of proteins systematically studied in eukaryotes and reported in a few prokaryotes are the iron-responsive proteins (IRPs). These IRPs bind to iron-responsive elements (IREs) present at untranslated regions (UTRs) of mRNAs and are responsible for posttranscriptional regulation of the expression of proteins involved in iron homeostasis. Amino acid sequence analysis of M. tuberculosis aconitase (Acn), a tricarboxylic acid (TCA) cycle enzyme, showed the presence of the conserved residues of the IRP class of proteins. We demonstrate that M. tuberculosis Acn is bifunctional. It is a monomeric protein that is enzymatically active in converting isocitrate to cis -aconitate at a broad pH range of 7 to 10 (optimum, pH 8). As evident from gel retardation assays, M. tuberculosis Acn also behaves like an IRP by binding to known mammalian IRE-like sequences and to predicted IRE-like sequences present at the 3′ UTR of thioredoxin ( trxC ) and the 5′ UTR of the iron-dependent repressor and activator ( ideR ) of M. tuberculosis. M. tuberculosis Acn when reactivated with Fe 2+ functions as a TCA cycle enzyme, but upon iron depletion by a specific iron chelator, it behaves like an IRP, binding to the selected IREs in vitro. Since iron is required for the Acn activity and inhibits the RNA-binding activity of Acn, the two activities of M. tuberculosis Acn are mutually exclusive. Our results demonstrate the bifunctional nature of M. tuberculosis Acn, pointing to its likely role in iron homeostasis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3