Abstract
When Lactobacillus bulgaricus NLS-4 was grown anaerobically in continuous culture with limiting glucose, a shift in the pH of the medium from the acidic to the alkaline range caused this normally homofermentative bacterium to catabolize glucose in a heterofermentative fashion. The change in the nature of the fermentation was accompanied by a decrease in lactate dehydrogenase biosynthesis in alkaline conditions. The lactate dehydrogenase from this organism did not require fructose 1,6-diphosphate or manganese ions (Mn2+) for catalytic activity. Involvement of the phosphoroclastic split in the pyruvate conversion in an alkaline environment was also confirmed. The high lactate dehydrogenase synthesis in acidic medium together with the participation of the phosphoroclastic split under alkaline conditions may explain the shift from homolactic to heterolactic fermentation of L. bulgaricus NLS-4 with the change of environmental pH.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献