Central Role of the NF-κB Pathway in the Scgb1a1 -Expressing Epithelium in Mediating Respiratory Syncytial Virus-Induced Airway Inflammation

Author:

Tian Bing12,Yang Jun12,Zhao Yingxin123,Ivanciuc Teodora4,Sun Hong1,Wakamiya Maki3,Garofalo Roberto P.24,Brasier Allan R.5

Affiliation:

1. Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA

2. Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA

3. Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA

4. Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA

5. Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin ( Scgb1a1 )-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele ( RelA fl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1 CreERTM/+ × RelA fl/fl mouse is a RelA conditional knockout (RelA CKO ) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelA CKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelA CKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo . TMX-treated RelA CKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1 -expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway. IMPORTANCE RSV infection is the most common cause of infant hospitalizations in the United States, resulting in 2.1 million children annually requiring medical attention. RSV primarily infects nasal epithelial cells, spreading distally to produce severe lower respiratory tract infections. Our study examines the role of a nonciliated respiratory epithelial cell population in RSV infection. We genetically engineered a mouse that can be selectively depleted of the NF-κB/RelA transcription factor in this subset of epithelial cells. These mice show an impaired activation of the bromodomain-containing protein 4 (BRD4) coactivator, resulting in reduced cytokine expression and neutrophilic inflammation. During the course of RSV infection, epithelial RelA-depleted mice have reduced disease scores and airway hyperreactivity yet increased levels of virus replication. We conclude that RelA-BRD4 signaling in nonciliated bronchiolar epithelial cells mediates neutrophilic airway inflammation and disease severity. This complex is an attractive target to reduce the severity of infection.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

National Science Foundation

HHS | NIH | National Center for Advancing Translational Sciences

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3