Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma

Author:

Liu Junzhi1ORCID,Li Huimin2,Zhang Nannan1,Dong Qiuping2,Liang Zheng1

Affiliation:

1. Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, 300052, China

2. Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China

Abstract

Background: Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD). Methods: We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments. Results: Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells. Conclusion: Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3