Characterization of three fimbrial genes, sefABC, of Salmonella enteritidis

Author:

Clouthier S C1,Müller K H1,Doran J L1,Collinson S K1,Kay W W1

Affiliation:

1. Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada.

Abstract

Salmonella enteritidis produces thin, filamentous fimbriae designated SEF14. A 3.9-kb region of a 5.3-kb fragment encoding genes responsible for SEF14 biosynthesis was sequenced and found to contain three genes, sefABC. sefA encoded a novel fimbrin, the structural subunit of SEF14 fimbriae. sefB and sefC encoded proteins homologous to Escherichia coli and Klebsiella pneumoniae fimbrial periplasmic chaperone proteins and fimbrial outer membrane proteins, respectively, and are the first such genes to be characterized from Salmonella spp. in vitro expression directed by the 5.3-kb DNA fragment identified SefA, SefB, and SefC as approximately 14,000-, 28,000-, and 90,000-M(r) proteins, respectively, which correlated with their predicted amino acid sequences. sefB and sefC were not expressed in the absence of sefA. Primer extension analysis of sefABC revealed two major transcription start sites located upstream of sefA. Transcription of sefBC also initiated from the sefA promoter region. Secondary-structure analysis of the mRNA transcript for sefABC predicted the formation of two stable stem-loop structures in the intercistronic region between sefA and sefB indicative of differential regulation of SefA, SefB, and SefC translation. E. coli cells carrying the 5.3-kb DNA fragment of S. enteritidis DNA were unable to assemble distinguishable SEF14 fimbriae; however, immunogold-labelled SEF14 fimbriae were displayed on E. coli clones containing a 44-kb DNA fragment which encompassed the 5.3-kb region. Therefore, sefABC genes make up part of a complex sef operon responsible for the expression and assembly of SEF14 fimbriae.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3