Identification of Hsp90 Inhibitors with Anti-Plasmodium Activity

Author:

Posfai Dora1,Eubanks Amber L.2,Keim Allison I.2,Lu Kuan-Yi1,Wang Grace Z.2,Hughes Philip F.3,Kato Nobutaka4,Haystead Timothy A.3,Derbyshire Emily R.12

Affiliation:

1. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

2. Department of Chemistry, Duke University, Durham, North Carolina, USA

3. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA

4. The Broad Institute, Cambridge, Massachusetts, USA

Abstract

ABSTRACT Malaria remains a global health burden partly due to Plasmodium parasite resistance to first-line therapeutics. The molecular chaperone heat shock protein 90 (Hsp90) has emerged as an essential protein for blood-stage Plasmodium parasites, but details about its function during malaria's elusive liver stage are unclear. We used target-based screens to identify compounds that bind to Plasmodium falciparum and human Hsp90, which revealed insights into chemotypes with species-selective binding. Using cell-based malaria assays, we demonstrate that all identified Hsp90-binding compounds are liver- and blood-stage Plasmodium inhibitors. Additionally, the Hsp90 inhibitor SNX-0723 in combination with the phosphatidylinositol 3-kinase inhibitor PIK-75 synergistically reduces the liver-stage parasite load. Time course inhibition studies with the Hsp90 inhibitors and expression analysis support a role for Plasmodium Hsp90 in late-liver-stage parasite development. Our results suggest that Plasmodium Hsp90 is essential to liver- and blood-stage parasite infections and highlight an attractive route for development of species-selective Pf Hsp90 inhibitors that may act synergistically in combination therapies to prevent and treat malaria.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3