Ionizing Radiation Induces Delayed Hyperrecombination in Mammalian Cells

Author:

Huang Lei12,Grim Suzanne2,Smith Leslie E.2,Kim Perry M.3,Nickoloff Jac A.4,Goloubeva Olga G.5,Morgan William F.26

Affiliation:

1. Graduate Program in Human Genetics

2. Radiation Oncology Research Laboratory

3. Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6

4. Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131

5. Biostatistics Division

6. Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201-1559

Abstract

ABSTRACT Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP +/− colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3