RalA but Not RalB Enhances Polarized Delivery of Membrane Proteins to the Basolateral Surface of Epithelial Cells

Author:

Shipitsin Michail1,Feig Larry A.1

Affiliation:

1. Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111

Abstract

ABSTRACT RalA and RalB constitute a family of highly similar (85% identity) Ras-related GTPases. Recently, active forms of both RalA and RalB have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. However, we show here that only active RalA enhances the rate of delivery of E-cadherin and other proteins to their site in the basolateral membrane of MDCK cells, consistent with RalA being a regulator of exocyst function. One reason for this difference is that RalA binds more effectively to the exocyst complex than active RalB does both in vivo and in vitro. Another reason is that active RalA localizes to perinuclear recycling endosomes, where regulation of vesicle sorting is thought to take place, while active RalB does not. Strikingly, analysis of chimeras made between RalA and RalB reveals that high-affinity exocyst binding by RalA is due to unique amino acid sequences in RalA that are distal to the common effector-binding domains shared by RalA and RalB. Moreover, these chimeras show that the perinuclear localization of active RalA is due in part to its unique variable domain near the C terminus. This distinct localization appears to be important for RalA effects on secretion because all RalA mutants tested that failed to localize to the perinuclear region also failed to promote basolateral delivery of E-cadherin. Interestingly, one of these inactive mutants maintained binding to the exocyst complex, suggesting that RalA binding to the exocyst is necessary but not sufficient for RalA to promote basolateral delivery of membrane proteins.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3