Exocyst inactivation in urothelial cells disrupts autophagy and activates non-canonical NF-κB signaling

Author:

Ortega Michael A.12ORCID,Villiger Ross K.2,Harrison-Chau Malia2ORCID,Lieu Suzanna2,Tamashiro Kadee-Kalia2,Lee Amanda J.23,Fujimoto Brent A.2,Patwardhan Geetika Y.2,Kepler Joshua2,Fogelgren Ben2ORCID

Affiliation:

1. Center for Biomedical Research at The Queen's Medical Center 1 , Honolulu, Hawaii 96813 , USA

2. University of Hawaiʿi at Manoa 2 Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , , Honolulu, Hawaii 96813 , USA

3. Kapiolani Community College 3 Math and Sciences Department , , Honolulu, Hawaii 96816 , USA

Abstract

ABSTRACT Ureter obstruction is a highly prevalent event during embryonic development and is a major cause of pediatric kidney disease. We have previously reported that ureteric bud-specific ablation of the gene expressing the exocyst subunit EXOC5 in late murine gestation results in failure of urothelial stratification, cell death and complete ureter obstruction. However, the mechanistic connection between disrupted exocyst activity, urothelial cell death and subsequent ureter obstruction was unclear. Here, we report that inhibited urothelial stratification does not drive cell death during ureter development. Instead, we demonstrate that the exocyst plays a critical role in autophagy in urothelial cells, and that disruption of autophagy activates a urothelial NF-κB stress response. Impaired autophagy first provokes canonical NF-κB activity, which is progressively followed by increasing levels of non-canonical NF-κB activity and cell death if the stress remains unresolved. Furthermore, we demonstrate that ureter obstructions can be completely rescued in Exoc5 conditional knockout mice by administering a single dose of the pan-caspase inhibitor z-VAD-FMK at embryonic day 16.5 prior to urothelial cell death. Taken together, ablation of Exoc5 disrupts autophagic stress response and activates progressive NF-κB signaling, which promotes obstructive uropathy.

Funder

National Institutes of Health

March of Dimes Foundation

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3