Author:
Miki B L,Poon N H,James A P,Seligy V L
Abstract
A model is proposed for the mechanism of flocculation interactions in yeasts in which flocculent cells have a recognition factor which attaches to alpha-mannan sites on other cells. This factor may be governed by the expression of the single, dominant gene FLO1. Isogenic strains of Saccharomyces cerevisiae, differing only at FLO1 and the marker genes ade1 and trp1, were developed to examine the components involved in flocculene. Electron microscopy and concanavalin Aferritin labeling of aggregated cells showed that extensive and intense interactions between cell wall mannan layers mediated cell aggregation. The components of the mannan layer essential for flocculence were Ca2+ ions, alpha-mannan carbohydrates, and proteins. By studying the divalent cation dependence at various pH values and in the presence of competing monovalent cations, flocculation was found to be Ca2+ dependent; however, Mg2+ and Mn2+ ions substituted for Ca2+ under certain conditions. Reversible inhibition of flocculation by concanavalin A and succinylated concanavalin A implicated alpha-branched mannan carbohydrates as one essential component which alone did not determine the strain specificity of flocculence, since nonflocculent strains interacted with and competed for binding sites on flocculent cells. FLO1 may govern the expression of a proteinaceous, lectin-like activity, firmly associated with the cell walls of flocculent cells, which bind to the alpha-mannan carbohydrates of adjoining cells. It was selectively and irreversibly inhibited by proteolysis and reduction of disulfide bonds. The potential of this system as a model for the genetic and biochemical control of cell-cell interactions is discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
310 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献