Development of Chemically Defined Media Supporting High-Cell-Density Growth of Lactococci, Enterococci, and Streptococci

Author:

Zhang Guiying12,Mills David A.2,Block David E.23

Affiliation:

1. Department of Food Science and Technology

2. Department of Viticulture and Enology

3. Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, California 95616

Abstract

ABSTRACT Lactococcus lactis IL1403 was used as an experimental strain to develop a chemically defined medium for study of the physiology and metabolic pathways of lactococci. An experimental leave-one-out technique was employed to determine the necessity of each of the 57 chemical components used in medium development. A statistical experimental design approach including three fractional factorial designs and a central composite design was used to optimize the fermentation process with 21 variables composed of 19 nutritional factors grouped from the 57 components and two environmental factors (initial pH and temperature). For L. lactis IL1403, the maximum biomass concentrations obtained with the two optimal chemically defined media developed in this study (ZMB1 and ZMB2) were generally 3.5- to 4-fold higher than the maximum biomass concentrations obtained with the previously described best synthetic media (SA) and 50% to 68% higher than the maximum biomass concentrations obtained with M17, a complex medium commonly used for lactococci. The new chemically defined media support high-cell-density growth of numerous strains of L. lactis , Enterococcus faecalis , and Streptococcus thermophilus .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3