Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi

Author:

Kleman-Leyer Karen1,Agosin Eduardo1,Conner Anthony H.1,Kirk T. Kent1

Affiliation:

1. Institute for Microbial and Biochemical Technology, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, One Gifford Pinchot Drive, Madison, Wisconsin 53705-2398, and Department of Chemical Engineering, Catholic University of Chile, Santiago 11, Chile2

Abstract

The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference24 articles.

1. Standard method of test for accelerated laboratory test of natural decay resistance of wood;American Society for Testing and Materials.;ASTM Des. D,1971

2. Standard test method for intrinsic viscosity of cellulose;American Society for Testing and Materials.;ASTM Des. D,1981

3. Hydrolysis and crystallization of cellulose;Battista 0.;Ind. Eng. Chem.,1950

4. Cowling E. B. 1961. Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Technical bulletin no. 1258. U.S. Department of Agriculture Washington D.C.

5. Structural features of cellulosic materials in relation to enzymatic hydrolysis;Cowling E. B.;Adv. Chem. Ser.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3