Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression

Author:

Castaño Jesus D.1ORCID,El Khoury Irina V.2,Goering Joshua1,Evans James E.23ORCID,Zhang Jiwei1ORCID

Affiliation:

1. Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA

2. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA

3. School of Biological Sciences, Washington State University, Pullman, Washington, USA

Abstract

ABSTRACT Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers’ deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus’s central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS’s function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion. IMPORTANCE Brown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of “omics” platforms has recently uncovered the key “oxidative-hydrolytic” mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes’ catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system’s use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.

Funder

U.S. Department of Energy

DOE | SC | Pacific Northwest National Laboratory

UMN | Department of Bioproducts and Biosystems Engineering, University of Minnesota

McIntire-Stennis Program

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3