TspO as a Modulator of the Repressor/Antirepressor (PpsR/AppA) Regulatory System in Rhodobacter sphaeroides 2.4.1

Author:

Zeng Xiaohua1,Kaplan Samuel1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030

Abstract

ABSTRACT The TspO outer membrane protein of Rhodobacter sphaeroides has been shown to be involved in controlling the transcription of a number of genes which encode enzymes involved in photopigment biosynthesis and the puc operon. The display of regulated genes appears identical to those genes encompassing the PpsR/AppA repressor/antirepressor regulon, although the effect of TspO is modest relative to that of PpsR/AppA. To directly address the hypothesis that TspO is effective through the PpsR/AppA system, we constructed mutant strains with mutations in both tspO and appA . In all cases, the phenotypes examined resembled those of the appA lesion by itself, leading us to conclude that TspO works through or modulates the PpsR/AppA system and acts upstream of the site of action of these regulatory proteins. In earlier publications, we had suggested that TspO is involved in the efflux of a certain intermediate(s) of the porphyrin biosynthesis pathway and that transcriptional regulation of target gene expression could be explained by the accumulation of a coactivator of AppA function. Although the data reported here do not precisely identify this coactivator, they lend support to this hypothesis. We discuss the importance of this form of gene control as the result of the recent extension of the TspO system to Sinorhizobium meliloti , as described by Davey and de Bruijn (M. E. Davey and F. J. de Bruijn, Appl. Environ. Microbiol. 66:5353–5359, 2000). It is therefore possible that this system constitutes a more widely, although not universally, demonstrated form of gene regulation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3