Flavivirus Activates Phosphatidylinositol 3-Kinase Signaling To Block Caspase-Dependent Apoptotic Cell Death at the Early Stage of Virus Infection

Author:

Lee Chyan-Jang12,Liao Ching-Len13,Lin Yi-Ling124

Affiliation:

1. Graduate Institute of Life Sciences

2. National Defense Medical Center, Institute of Biomedical Sciences

3. Department of Microbiology and Immunology

4. Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China

Abstract

ABSTRACT Flaviviruses such as dengue virus (DEN) and Japanese encephalitis virus (JEV) are medically important in humans. The lipid kinase, phosphatidylinositol 3-kinase (PI3K) and its downstream target Akt have been implicated in the regulation of diverse cellular functions such as proliferation, and apoptosis. Since JEV and DEN appear to trigger apoptosis in cultured cells at a rather late stage of infection, we evaluated the possible roles of the PI3K/Akt signaling pathway in flavivirus-infected cells. We found that Akt phosphorylation was noticeable in the JEV- and DEN serotype 2 (DEN-2)-infected neuronal N18 cells in an early, transient, PI3K- and lipid raft-dependent manner. Blocking of PI3K activation by its specific inhibitor LY294002 or wortmannin greatly enhanced virus-induced cytopathic effects (CPEs), even at an early stage of infection, but had no effect on virus production. This severe CPE was characterized as apoptotic cell death as evidenced by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining and cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Mechanically, the initiator and effector caspases involved are mainly caspase-9 and caspase-6, since only a pan-caspase inhibitor and the inhibitors preferentially target caspase-9 and -6, but not the ones antagonizing caspase-8, -3, or -7 alleviated the levels of PARP cleavage after virus infection and PI3K blockage. Furthermore, Bcl-2 appears to be a crucial mediator downstream of PI3K/Akt signaling, since overexpression of Bcl-2 reduced virus-induced apoptosis even when PI3K activation was repressed. Collectively, our results suggest an antiapoptotic role for the PI3K/Akt pathway triggered by JEV and DEN-2 to protect infected cells from early apoptotic cell death.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3