Kaempferol‐Enhanced Migration and Differentiation of C2C12 Myoblasts via ITG1B/FAK/Paxillin and IGF1R/AKT/mTOR Signaling Pathways

Author:

Hour Tzyh‐Chyuan12,Lan Nhi Nguyen Thai1,Lai I‐Ju3,Chuu Chih‐Pin4,Lin Pei‐Chen5,Chang Hsi‐Wen1,Su Ying‐Fang1,Chen Chung‐Hwan6,Chen Yu‐Kuei3ORCID

Affiliation:

1. Department of Biochemistry School of Medicine Kaohsiung Medical University Kaohsiung 807378 Taiwan

2. Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 807378 Taiwan

3. Department of Nutrition I‐Shou University Kaohsiung 82445 Taiwan

4. Institute of Cellular and System Medicine National Health Research Institutes Miaoli County 350401 Taiwan

5. Department of Oral Hygiene Kaohsiung Medical University Kaohsiung 807378 Taiwan

6. Orthopaedic Research Center and Department of Orthopedics Kaohsiung Medical University Hospital and Kaohsiung Municipal Ta‐Tung Hospital Kaohsiung Medical University Kaohsiung 807378 Taiwan

Abstract

ScopeKaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied.Methods and resultsThis study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p‐FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation.ConclusionTogether, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age‐related loss of muscle mass and help maintain muscle health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3