Affiliation:
1. Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
2. Instituto Adolfo Lutz, São Paulo, Brazil
Abstract
ABSTRACT
Serious infections with
Pseudomonas aeruginosa
are frequently treated with the combination of a β-lactam antimicrobial and an aminoglycoside.
P. aeruginosa
strain PA0905 was isolated in 2005 from an inpatient in Brazil. It showed a panresistant phenotype that included resistance to β-lactams, aminoglycosides, and fluoroquinolones. The β-lactam resistance was conferred by the production of the metallo-β-lactamase SPM-1. No inhibitory zone was observed when a disk diffusion test was performed with the semisynthetic aminoglycoside arbekacin, raising suspicion of 16S rRNA methylase production. A cloning experiment subsequently revealed the presence of a novel 16S rRNA methylase, RmtD, which accounted for the high-level resistance to all 4,6-disubstituted deoxystreptamine aminoglycosides, such as amikacin, tobramycin, and gentamicin. RmtD shared a moderate degree of identity with RmtA, another 16S rRNA methylase that was initially reported to occur in
P. aeruginosa
in Japan in 2003. This is the first identification of aminoglycoside resistance mediated by a 16S rRNA methylase in South America. This is also the first report to document coproduction of a metallo-β-lactamase and a 16S rRNA methylase, a combination that would severely compromise therapeutic options for the infected patients.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献