The predictive potential of different molecular markers linked to amikacin susceptibility phenotypes in Pseudomonas aeruginosa

Author:

Nageeb Wedad M.ORCID,Hetta Helal F.

Abstract

Informed antibiotic prescription offers a practical solution to antibiotic resistance problem. With the increasing affordability of different sequencing technologies, molecular-based resistance prediction would direct proper antibiotic selection and preserve available agents. Amikacin is a broad-spectrum aminoglycoside exhibiting higher clinical efficacy and less resistance rates in Ps. aeruginosa due to its structural nature and its ability to achieve higher serum concentrations at lower therapeutic doses. This study examines the predictive potential of molecular markers underlying amikacin susceptibility phenotypes in order to provide improved diagnostic panels. Using a predictive model, genes and variants underlying amikacin resistance have been statistically and functionally explored in a large comprehensive and diverse set of Ps. aeruginosa completely sequenced genomes. Different genes and variants have been examined for their predictive potential and functional correlation to amikacin susceptibility phenotypes. Three predictive sets of molecular markers have been identified and can be used in a complementary manner, offering promising molecular diagnostics. armR, nalC, nalD, mexR, mexZ, ampR, rmtD, nalDSer32Asn, fusA1Y552C, fusA1D588G, arnAA170T, and arnDG206C have been identified as the best amikacin resistance predictors in Ps. aeruginosa while faoAT385A, nuoGA890T, nuoGA574T, lptAT55A, lptAR62S, pstBR87C, gidBE126G, gidBQ28K, amgSE108Q, and rplYQ41L have been identified as the best amikacin susceptibility predictors. Combining different measures of predictive performance together with further functional analysis can help design new and more informative molecular diagnostic panels. This would greatly inform and direct point of care diagnosis and prescription, which would consequently preserve amikacin functionality and usefulness.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3