Affiliation:
1. Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
2. VircoLabs, Durham, North Carolina
Abstract
ABSTRACT
The K65R mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is selected in vitro by many
d
-nucleoside analog RT inhibitors (NRTI) but has been rarely detected in treated patients. In recent clinical trials, the K65R mutation has emerged frequently in patients experiencing virologic failure on antiretroviral combinations that do not include 3′-azidothymidine (AZT). The reason for this change is uncertain. To gain insight, we examined trends in the frequency of K65R in a large genotype database, the association of K65R with thymidine analog mutations (TAMs) and other NRTI mutations, and the viral susceptibility profile of HIV-1 with K65R alone and in combination with TAMs. Among >60,000 clinical samples submitted for genotype analysis that contained one or more NRTI resistance mutations, the frequency of K65R increased from 0.4% in 1998 to 3.6% in 2003. Among samples with K65R, a strong negative association was evident with the TAMs M41L, D67N, L210W, T215Y/F, and K219Q/E (
P
< 0.005) but not with other NRTI mutations, including the Q151M complex. This suggested that K65R and TAMs are antagonistic. To test this possibility, we generated recombinant HIV-1 encoding K65R in two different TAM backgrounds: M41L/L210W/T215Y and D67N/K70R/T215F/K219Q. K65R reduced AZT resistance from >50-fold to <2.5-fold in both backgrounds. In addition, TAMs antagonized the phenotypic effect of K65R, reducing resistance to tenofovir, abacavir, 2′,3′-dideoxycytidine, dideoxyinosine, and stavudine. In conclusion, K65R and TAMs exhibit bidirectional phenotypic antagonism. This antagonism likely explains the negative association of these mutations in genotype databases, the rare emergence of K65R with antiretroviral therapies that contain AZT, and its more frequent emergence with combinations that exclude AZT.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference49 articles.
1. Arion, D., N. Kaushik, S. McCormick, G. Borkow, and M. A. Parniak. 1998. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry37:15908-15917.
2. In Vitro Selection of Mutations in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase That Decrease Susceptibility to (−)-β-
d
-Dioxolane-Guanosine and Suppress Resistance to 3′-Azido-3′-Deoxythymidine
3. The M184V Mutation Reduces the Selective Excision of Zidovudine 5′-Monophosphate (AZTMP) by the Reverse Transcriptase of Human Immunodeficiency Virus Type 1
4. Selective Excision of AZTMP by Drug-Resistant Human Immunodeficiency Virus Reverse Transcriptase
5. Brodard, V., H. Moret, I. Béguinot, L. Morcrette, L. Bourdaire, J. Jacques, C. Rouger, C. Strady, J.-L. Berger, and L. Andréoletti. 2005. Prevalence of detection and dynamics of selection and reversion of K65R mutation in nucleoside reverse transcriptase inhibitor-experienced patients failing an antiretroviral regimen. J. Acquired Immune Defic. Syndr.39:250-253.
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献