Author:
Almaghrabi Reem,Clancy Cornelius J.,Doi Yohei,Hao Binghua,Chen Liang,Shields Ryan K.,Press Ellen G.,Iovine Nicole M.,Townsend Bethany M.,Wagener Marilyn M.,Kreiswirth Barry,Nguyen M. Hong
Abstract
ABSTRACTWe measuredin vitroactivity of plazomicin, a next-generation aminoglycoside, and other aminoglycosides against 50 carbapenem-resistantKlebsiella pneumoniaestrains from two centers and correlated the results with the presence of various aminoglycoside-modifying enzymes (AMEs). Ninety-four percent of strains were sequence type 258 (ST258) clones, which exhibited 5ompK36genotypes; 80% and 10% of strains producedKlebsiella pneumoniaecarbapenemase 2 (KPC-2) and KPC-3, respectively. Ninety-eight percent of strains possessed AMEs, including AAC(6′)-Ib (98%), APH(3′)-Ia (56%), AAC(3)-IV (38%), and ANT(2″)-Ia (2%). Gentamicin, tobramycin, and amikacin nonsusceptibility rates were 40, 98, and 16%, respectively. Plazomicin MICs ranged from 0.25 to 1 μg/ml. Tobramycin and plazomicin MICs correlated with gentamicin MICs (r= 0.75 and 0.57, respectively). Plazomicin exerted bactericidal activity against 17% (1× MIC) and 94% (4× MIC) of strains. All strains with AAC(6′)-Ib were tobramycin-resistant; 16% were nonsusceptible to amikacin. AAC(6′)-Ib combined with another AME was associated with higher gentamicin, tobramycin, and plazomicin MICs than AAC(6′)-Ib alone (P= 0.01, 0.0008, and 0.046, respectively). The presence of AAC(3)-IV in a strain was also associated with higher gentamicin, tobramycin, and plazomicin MICs (P= 0.0006,P< 0.0001, andP= 0.01, respectively). The combination of AAC(6′)-Ib and another AME, the presence of AAC(3)-IV, and the presence of APH(3′)-Ia were each associated with gentamicin resistance (P= 0.0002, 0.003, and 0.01, respectively). In conclusion, carbapenem-resistantK. pneumoniaestrains (including ST258 clones) exhibit highly diverse antimicrobial resistance genotypes and phenotypes. Plazomicin may offer a treatment option against strains resistant to other aminoglycosides. The development of molecular assays that predict antimicrobial responses among carbapenem-resistantK. pneumoniaestrains should be a research priority.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology