The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling

Author:

Zhang Tianyuan123ORCID,Li Hanzhou3ORCID,Ma Silin1ORCID,Cao Jian3ORCID,Liao Hao1ORCID,Huang Qiaoyun14ORCID,Chen Wenli12ORCID

Affiliation:

1. National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China

2. College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China

3. Wuhan Benagen Technology Co., Ltd., Wuhan, China

4. Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China

Abstract

ABSTRACT The long-read amplicon provides a species-level solution for the community. With the improvement of nanopore flowcells, the accuracy of Oxford Nanopore Technologies (ONT) R10.4.1 has been substantially enhanced, with an average of approximately 99%. To evaluate its effectiveness on amplicons, three types of microbiomes were analyzed by 16S ribosomal RNA (hereinafter referred to as “16S”) amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1) in the current study. We showed the error rate, recall, precision, and bias index in the mock sample. The error rate of ONT R10.4.1 was greatly reduced, with a better recall in the case of the synthetic community. Meanwhile, in different types of environmental samples, ONT R10.4.1 analysis resulted in a composition similar to Pacbio data. We found that classification tools and databases influence ONT data. Based on these results, we conclude that the ONT R10.4.1 16S amplicon can also be used for application in environmental samples. IMPORTANCE The long-read amplicon supplies the community with a species-level solution. Due to the high error rate of nanopore sequencing early on, it has not been frequently used in 16S studies. Oxford Nanopore Technologies (ONT) introduced the R10.4.1 flowcell with Q20+ reagent to achieve more than 99% accuracy as sequencing technology advanced. However, there has been no published study on the performance of commercial PromethION sequencers with R10.4.1 flowcells on 16S sequencing or on the impact of accuracy improvement on taxonomy (R9.4.1 to R10.4.1) using 16S ONT data. In this study, three types of microbiomes were investigated by 16S ribosomal RNA (rRNA) amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1). In the mock sample, we displayed the error rate, recall, precision, and bias index. We observed that the error rate in ONT R10.4.1 is significantly lower, especially when deletions are involved. First and foremost, R10.4.1 and Pacific Bioscience platforms reveal a similar microbiome in environmental samples. This study shows that the R10.4.1 full-length 16S rRNA sequences allow for species identification of environmental microbiota.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3