Sequencing introduced false positive rare taxa lead to biased microbial community diversity, assembly, and interaction interpretation in amplicon studies

Author:

Jia Yangyang,Zhao Shengguo,Guo Wenjie,Peng Ling,Zhao Fang,Wang Lushan,Fan Guangyi,Zhu Yuanfang,Xu Dayou,Liu Guilin,Wang Ruoqing,Fang Xiaodong,Zhang He,Kristiansen Karsten,Zhang Wenwei,Chen JianweiORCID

Abstract

Abstract Background Increasing studies have demonstrated potential disproportionate functional and ecological contributions of rare taxa in a microbial community. However, the study of the microbial rare biosphere is hampered by their inherent scarcity and the deficiency of currently available techniques. Sample-wise cross contaminations might be introduced by sample index misassignment in the most widely used metabarcoding amplicon sequencing approach. Although downstream bioinformatic quality control and clustering or denoising algorithms could remove sequencing errors and non-biological artifact reads, no algorithm could eliminate high quality reads from sample-wise cross contaminations introduced by index misassignment, making it difficult to distinguish between bona fide rare taxa and potential false positives in metabarcoding studies. Results We thoroughly evaluated the rate of index misassignment of the widely used NovaSeq 6000 and DNBSEQ-G400 sequencing platforms using both commercial and customized mock communities, and observed significant lower (0.08% vs. 5.68%) fraction of potential false positive reads for DNBSEQ-G400 as compared to NovaSeq 6000. Significant batch effects could be caused by stochastically introduced false positive or false negative rare taxa. These false detections could also lead to inflated alpha diversity of relatively simple microbial communities and underestimated that of complex ones. Further test using a set of cow rumen samples reported differential rare taxa by different sequencing platforms. Correlation analysis of the rare taxa detected by each sequencing platform demonstrated that the rare taxa identified by DNBSEQ-G400 platform had a much higher possibility to be correlated with the physiochemical properties of rumen fluid as compared to NovaSeq 6000 platform. Community assembly mechanism and microbial network correlation analysis indicated that false positive or negative rare taxa detection could lead to biased community assembly mechanism and identification of fake keystone species of the community. Conclusions We highly suggest proper positive/negative/blank controls, technical replicate settings, and proper sequencing platform selection in future amplicon studies, especially when the microbial rare biosphere would be focused.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3