Conserved Protein Kinases Encoded by Herpesviruses and Cellular Protein Kinase cdc2 Target the Same Phosphorylation Site in Eukaryotic Elongation Factor 1δ

Author:

Kawaguchi Yasushi123,Kato Kentaro1,Tanaka Michiko1,Kanamori Mikiko1,Nishiyama Yukihiro2,Yamanashi Yuji1

Affiliation:

1. Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510

2. Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya, 466-8550

3. PRESTO, Japan Science and Technology Corporation, Tachikawa, Tokyo 190-0012, Japan

Abstract

ABSTRACT Earlier studies have shown that translation elongation factor 1δ (EF-1δ) is hyperphosphorylated in various mammalian cells infected with representative alpha-, beta-, and gammaherpesviruses and that the modification is mediated by conserved viral protein kinases encoded by herpesviruses, including UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus, and BGLF4 of Epstein-Barr virus (EBV). In the present study, we attempted to identify the site in EF-1δ associated with the hyperphosphorylation by the herpesvirus protein kinases. Our results are as follows: (i) not only in infected cells but also in uninfected cells, replacement of the serine residue at position 133 (Ser-133) of EF-1δ by alanine precluded the posttranslational processing of EF-1δ, which corresponds to the hyperphosphorylation. (ii) A purified chimeric protein consisting of maltose binding protein (MBP) fused to a domain of EF-1δ containing Ser-133 (MBP-EFWt) is specifically phosphorylated in in vitro kinase assays by purified recombinant UL13 fused to glutathione S -transferase (GST) expressed in the baculovirus system. In contrast, the level of phosphorylation by the recombinant UL13 of MBP-EFWt carrying an alanine replacement of Ser-133 (MBP-EFS133A) was greatly impaired. (iii) MBP-EFWt is also specifically phosphorylated in vitro by purified recombinant BGLF4 fused to GST expressed in the baculovirus system, and the level of phosphorylation of MBP-EFS133A by the recombinant BGLF4 was greatly reduced. (iv) The sequence flanking Ser-133 of EF-1δ completely matches the consensus phosphorylation site for a cellular protein kinase, cdc2, and in vitro kinase assays revealed that purified cdc2 phosphorylates Ser-133 of EF-1δ. (v) As observed with EF-1δ, the casein kinase II β subunit (CKIIβ) was specifically phosphorylated by UL13 in vitro, while the level of phosphorylation of CKIIβ by UL13 was greatly diminished when a serine residue at position 209, which has been reported to be phosphorylated by cdc2, was replaced with alanine. These results indicate that the conserved protein kinases encoded by herpesviruses and a cellular protein kinase, cdc2, have the ability to target the same amino acid residues for phosphorylation. Our results raise the possibility that the viral protein kinases mimic cdc2 in infected cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3