Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target

Author:

Marschall Manfred1,Schütz Martin1,Wild Markus1,Socher Eileen2ORCID,Wangen Christina1,Dhotre Kishore1ORCID,Rawlinson William D.3ORCID,Sticht Heinrich4ORCID

Affiliation:

1. Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany

2. Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

3. Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia

4. Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany

Abstract

Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97–cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97–cyclin H–CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus–host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97–cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin–CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.

Funder

Deutsche Forschungsgemeinschaft

Interdisciplinary Center of Clinical Research of the Medical Center/Universitätsklinikum Erlangen

Wilhelm Sander-Stiftung

Bayerische Forschungsstiftung

Volkswagen-Stiftung

Matching Funds Program of Forschungsstiftung Medizin, UKER Medical Center Erlangen & Manfred Roth-Stiftung Fürth

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3