Molecular Characteristics of Human Immunodeficiency Virus Type 1 Subtype C Viruses from KwaZulu-Natal, South Africa: Implications for Vaccine and Antiretroviral Control Strategies

Author:

Gordon M.1,De Oliveira T.1,Bishop K.1,Coovadia H. M.2,Madurai L.3,Engelbrecht S.4,Janse van Rensburg E.4,Mosam A.5,Smith A.6,Cassol S.17

Affiliation:

1. HIV-1 Molecular Virology and Bioinformatics Laboratories, Africa Centre for Health and Population Studies and the Nelson R. Mandela School of Medicine

2. Centre for HIV/AIDS Networking

3. Medical Research Council, Durban

4. Department of Medical Virology, University of Stellenbosch and Tygerberg Hospital, Tygerberg, South Africa

5. Department of Dermatology

6. Department of Virology, University of Natal

7. Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom

Abstract

ABSTRACT The KwaZulu-Natal region of South Africa is experiencing an explosive outbreak of human immunodeficiency virus type 1 (HIV-1) subtype C infections. Understanding the genetic diversity of C viruses and the biological consequences of this diversity is important for the design of effective control strategies. We analyzed the protease gene, the first 935 nucleotides of reverse transcriptase, and the C2V5 envelope region of a representative set of 72 treatment-naïve patients from KwaZulu-Natal and correlated the results with amino acid signature and resistance patterns. Phylogenetic analysis revealed multiple clusters or “lineages” of HIV-1 subtype C that segregated with other C viruses from southern Africa. The same pattern was observed for both black and Indian subgroups and for retrospective specimens collected prior to 1990, indicating that multiple sublineages of HIV-1 C have been present in KwaZulu-Natal since the early stages of the epidemic. With the exception of three nonnucleoside reverse transcriptase inhibitor mutations, no primary resistance mutations were identified. Numerous accessory polymorphisms were present in the protease, but none were located at drug-binding or active sites of the enzyme. One frequent polymorphism, I93L, was located near the protease/reverse transcriptase cleavage site. In the envelope, disruption of the glycosylation motif at the beginning of V3 was associated with the presence of an extra protein kinase C phosphorylation site at codon 11. Many polymorphisms were embedded within cytotoxic T lymphocyte or overlapping cytotoxic T-lymphocyte/T-helper epitopes, as defined for subtype B. This work forms a baseline for future studies aimed at understanding the impact of genetic diversity on vaccine efficacy and on natural susceptibility to antiretroviral drugs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3