Affiliation:
1. Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139
Abstract
ABSTRACT
Topoisomerase IV and DNA gyrase are related bacterial type II topoisomerases that utilize the free energy from ATP hydrolysis to catalyze topological changes in the bacterial genome. The essential function of DNA gyrase is the introduction of negative DNA supercoils into the genome, whereas the essential function of topoisomerase IV is to decatenate daughter chromosomes following replication. Here, we report the crystal structures of a 43-kDa N-terminal fragment of
Escherichia coli
topoisomerase IV ParE subunit complexed with adenylyl-imidodiphosphate at 2.0-Å resolution and a 24-kDa N-terminal fragment of the ParE subunit complexed with novobiocin at 2.1-Å resolution. The solved ParE structures are strikingly similar to the known gyrase B (GyrB) subunit structures. We also identified single-position equivalent amino acid residues in ParE (M74) and in GyrB (I78) that, when exchanged, increased the potency of novobiocin against topoisomerase IV by nearly 20-fold (to 12 nM). The corresponding exchange in gyrase (I78 M) yielded a 20-fold decrease in the potency of novobiocin (to 1.0 μM). These data offer an explanation for the observation that novobiocin is significantly less potent against topoisomerase IV than against DNA gyrase. Additionally, the enzyme kinetic parameters were affected. In gyrase, the ATP
K
m
increased ≈5-fold and the
V
max
decreased ≈30%. In contrast, the topoisomerase IV ATP
K
m
decreased by a factor of 6, and the
V
max
increased ≈2-fold from the wild-type values. These data demonstrate that the ParE M74 and GyrB I78 side chains impart opposite effects on the enzyme's substrate affinity and catalytic efficiency.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
131 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献