Stabilization and rational design of serine protease AprM under highly alkaline and high-temperature conditions

Author:

Masui A1,Fujiwara N1,Imanaka T1

Affiliation:

1. Osaka Prefectural Industrial Technology Research Institute, Japan.

Abstract

Rational shift of the optimum pH toward alkalinity and enhancement of thermostability were investigated by using a thermostable extremely alkaline protease (optimum pH, 12 to 13) from the alkaliphilic and thermophilic Bacillus sp. strain B18'. The protease gene (aprM) was cloned, and the sequence analysis revealed an open reading frame of 361 amino acids that was composed of a putative signal sequence (24 amino acids), a prosequence (69 amino acids), and a mature enzyme (268 amino acids) (molecular weight, 27,664). The amino acid sequence of this protease was compared with those of other serine proteases. A direct correlation of higher optimum pH with an increase in the number of arginine residues was observed. An even more thermostable mutant enzyme was created by introducing a point mutation. When the position of the beta-turn, Thr-203, was replaced by Pro, the residual activity of this mutant enzyme at 80 degrees C for 30 min was higher than that of the wild-type enzyme (50% versus 10%). The specific activity of this mutant enzyme at 70 degrees C was 105% of that of the wild-type enzyme under nondenaturation condition. These data suggest that the higher content of Arg residues favors the alkalinity of the serine protease and that introduction of a Pro residue into the beta-turn structure stabilizes the enzyme.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3