Antimicrobial Resistance in Mycoplasma spp

Author:

Gautier-Bouchardon Anne V.1

Affiliation:

1. Mycoplasmology, Bacteriology, and Antimicrobial Resistance Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), Ploufragan, France

Abstract

ABSTRACT Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic Mycoplasma species of major veterinary interest: M. gallisepticum and M. synoviae in poultry; M. hyopneumoniae , M. hyorhinis , and M. hyosynoviae in swine; M. bovis in cattle; and M. agalactiae in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics in vitro . Resistance frequencies vary according to the Mycoplasma species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, in vitro -selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that in vitro information can be used to provide advice on selection of in vivo treatments.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Reference149 articles.

1. Razin S. 1996. Mycoplasmas. In Baron S (ed) Medical Microbiology . University of Texas Medical Branch at Galveston Galveston TX.

2. Taylor-Robinson D. 1996. Infections due to species of Mycoplasma and Ureaplasma : an update. Clin Infect Dis 23: 671–682 quiz 683–684 http://dx.doi.org/10.1093/clinids/23.4.671. [PubMed]

3. Brown DR Zacher LA Wendland LD Brown MB. 2005. Emerging mycoplasmoses in wildlife p 383–414. In Blanchard A Browning G (ed) Mycoplasmas: Molecular Biology Pathogenicity and Strategies for Control . Horizon Bioscience Norfolk UK. [PubMed]

4. Markham PF Noormohammadi AH. 2005. Diagnosis of mycoplasmosis in animals p 355–382. In Blanchard A Browning G (ed) Mycoplasmas: Molecular Biology Pathogenicity and Strategies for Control . Horizon Bioscience Norfolk UK.

5. Waites K Talkington D. 2005. New developments in human diseases due to mycoplasmas p 289–354. In Blanchard A Browning G (ed) Mycoplasmas: Molecular Biology Pathogenicity and Strategies for Control . Horizon Bioscience Norfolk UK.

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3