Mesomycoplasma ovipneumoniae from goats with respiratory infection: pathogenic characteristics, population structure, and genomic features

Author:

Ma Chunxia,Li Ming,Peng Hao,Lan Meiyi,Tao Li,Li Changting,Wu Cuilan,Bai Huili,Zhong Yawen,Zhong Shuhong,Qin Ruofu,Li Fengsheng,Li Jun,He Jiakang

Abstract

Abstract Background Mycoplasma ovipneumoniae is a critical pathogen that causes respiratory diseases that threaten Caprini health and cause economic damage. A genome-wide study of M. ovipneumoniae will help understand the pathogenic characteristics of this microorganism. Results Toxicological pathology and whole-genome sequencing of nine M. ovipneumoniae strains isolated from goats were performed using an epidemiological survey. These strains exhibited anterior ventral lung consolidation, typical of bronchopneumonia in goats. Average nucleotide identity and phylogenetic analysis based on whole-genome sequences showed that all M. ovipneumoniae strains clustered into two clades, largely in accordance with their geographical origins. The pan-genome of the 23 M. ovipneumoniae strains contained 5,596 genes, including 385 core, 210 soft core, and 5,001 accessory genes. Among these genes, two protein-coding genes were annotated as cilium adhesion and eight as paralog surface adhesins when annotated to VFDB, and no antibiotic resistance-related genes were predicted. Additionally, 23 strains carried glucosidase-related genes (ycjT and group_1595) and glucosidase-related genes (atpD_2), indicating that M. ovipneumoniae possesses a wide range of glycoside hydrolase activities. Conclusions The population structure and genomic features identified in this study will facilitate further investigations into the pathogenesis of M. ovipneumoniae and lay the foundation for the development of preventive and therapeutic methods.

Funder

Guangxi key research and development plan

Guangxi Key Laboratory of Veterinary Biotechnology Independent Research Topic

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3