rRNA Mimicry in RNA Regulation of Gene Expression

Author:

Meyer Michelle M.1

Affiliation:

1. Department of Biology, Boston College, Chestnut Hill, MA 02467

Abstract

ABSTRACT The rRNA is the largest and most abundant RNA in bacterial and archaeal cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence variation. Production of ribosome components including >50 ribosomal proteins (r-proteins) consumes significant cellular resources. Thus, RNA cis -regulatory structures that interact with r-proteins to repress further r-protein synthesis play an important role in maintaining appropriate stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to directly mimic the rRNA. However, more than 30 years of research has demonstrated that a variety of different recognition and regulatory paradigms are present. This review will demonstrate how structural mimicry between the rRNA and mRNA cis -regulatory structures may take many different forms. The collection of mRNA structures that interact with r-proteins to regulate r-protein operons are best characterized in Escherichia coli , but are increasingly found within species from nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions. The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many ways. Some r-protein-interacting mRNAs are immediately obvious as rRNA mimics from primary sequence similarity, others are identifiable only after secondary or tertiary structure determination, and some show no obvious similarity. In addition, across different bacterial species a host of different mechanisms of action have been characterized, showing that there is no simple one-size-fits-all solution.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3