Make It a Sweet Home: Responses of Chlamydia trachomatis to the Challenges of an Intravacuolar Lifestyle

Author:

Triboulet Sébastien1,Subtil Agathe1

Affiliation:

1. Institut Pasteur, Cell Biology of Microbial Infection, 75015 Paris, France

Abstract

ABSTRACT Intravacuolar development has been adopted by several bacteria that grow inside a host cell. Remaining in a vacuole, as opposed to breaching the cytosol, protects the bacteria from some aspects of the cytosolic innate host defense and allows them to build an environment perfectly adapted to their needs. However, this raises new challenges: the host resources are separated from the bacteria by a lipid bilayer that is nonpermeable to most nutrients. In addition, the area of this lipid bilayer needs to expand to accommodate bacterial multiplication. This requires building material and energy that are not directly invested in bacterial growth. This article describes the strategies acquired by the obligate intracellular pathogen Chlamydia trachomatis to circumvent the difficulties raised by an intravacuolar lifestyle. We start with an overview of the origin and composition of the vacuolar membrane. Acquisition of host resources is largely, although not exclusively, mediated by interactions with membranous compartments of the eukaryotic cell, and we describe how the inclusion modifies the architecture of the cell and distribution of the neighboring compartments. The second part of this review describes the four mechanisms characterized so far by which the bacteria acquire resources from the host: (i) transport/diffusion across the vacuole membrane, (ii) fusion of this membrane with host compartments, (iii) direct transfer of lipids at membrane contact sites, and (iv) engulfment by the vacuole membrane of large cytoplasmic entities.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3