Platelet-activating factor modulates endotoxin-induced macrophage procoagulant activity by a protein kinase C-dependent mechanism

Author:

Kucey D S1,Cheung P Y1,Rotstein O D1

Affiliation:

1. Department of Surgery, Toronto General Hospital, Ontario, Canada.

Abstract

Macrophage procoagulant activity is an important mediator of extravascular fibrin deposition at sites of infection and appears to contribute to the pathogenesis of several infectious disease processes. Previous studies have shown that the inflammatory mediator platelet-activating factor was able to prime macrophages for induction of procoagulant activity by bacterial lipopolysaccharide. The present studies were designed to examine the mechanism of this priming effect. Platelet-activating factor (100 nM) primed macrophages for procoagulant activity generation in response to endotoxin at concentrations as low as 100 ng/ml and also following exposure to Escherichia coli, Bacteroides fragilis, and Staphylococcus aureus. The priming effect occurred following a pretreatment with platelet-activating factor for as short as 1 min, suggesting a rapid activation event. Two different doses of the calcium ionophore ionomycin were used to mimic the peak and sustained effects of platelet-activating factor on cytoplasmic calcium levels (1 microM and 100 nM, respectively). Neither dose was able to mimic the priming effect. However, extracellular calcium was necessary for induction of procoagulant activity and the priming effect. By contrast, the protein kinase C agonist phorbol myristate acetate reproduced the priming phenomenon observed for platelet-activating factor. In further support of the concept that protein kinase C activation mediated the effect of platelet-activating factor, the specific protein kinase C inhibitor staurosporine reversed the ability of platelet-activating factor to augment induction of macrophage procoagulant activity by endotoxin. These data suggest mechanisms by which inflammatory mediators within the microenvironment of infection might modulate the host response to bacterial pathogens.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3