Author:
Allard M. F.,Doerschuk C. M.,Brumwell M. L.,Belzberg A.,Hogg J. C.
Abstract
The role of fibrinogen in the evolution of the increased permeability after oleic acid-induced lung injury was studied in New Zealand White rabbits. Animals depleted of fibrinogen by treatment with Malayan pit viper venom were compared with untreated rabbits immediately and at 1 and 24 h after injury. The increased permeability to albumin and elevated extravascular lung water (EVLW) associated with lung injury returned to control values by 24 h in untreated animals. Fibrinogen-depleted animals had a higher mortality (10/25 vs. 2/17, P less than 0.02) and showed a greater immediate increase in permeability to albumin that returned to control values at 1 and 24 h after injury, as well as trends toward elevated blood-free dry lung weight and larger increases in EVLW that persisted for 24 h. These findings indicate that fibrinogen-related proteins play an important role in controlling the microvascular injury that is produced by oleic acid. However, when these proteins are depleted, other mechanisms partially control the leak at later stages of the repair process.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献