Affiliation:
1. Microbiology Department, University of Massachusetts Medical School, Worcester, Massachusetts 01604
Abstract
Yeast ribonucleic acid (RNA) polymerase II, isolated after fractionation on diethylaminoethyl (DEAE)-cellulose (DE-52) or on DEAE-Sephadex (A-25), is 50% inhibited by 1.5 μg of α-amanitin. This inhibition is independent of the sequence of interaction of enzyme, template, nucleotides, and antibiotic and is expressed immediately on addition of α-amanitin to a preparation actively synthesizing RNA. Thus, α-amanitin's primary effect is inhibition of elongation of preinitiated RNA sequences in this system, as in others. A single peak of α-amanitin-resistant RNA polymerase activity (I) was eluted before enzyme II on either column. On A-25 but not on DE-52, a third peak of activity (III) was eluted after enzyme II. This activity was also resistant to α-amanitin. Enzymes I, II, and III were 50% inhibited by 3, 4, and 3 μg of thiolutin per ml, respectively. The extent of inhibition was independent of the nature of the template (native or denatured salmon sperm deoxyribonucleic acid or poly(dA-dT) or of the presence of 0.4 mM dithiothreitol, but this marked inhibition was only seen when enzymes were preincubated with thiolutin in the absence of template. Template protected the enzymes against thiolutin in the absence of nucleotides. Either the sensitive site on the polymerase is only accessible to thiolutin before interaction with template or thiolutin inhibits functional polymerase-template interaction but not elongation of preinitiated RNA chains.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献