Endogenous CD317/Tetherin Limits Replication of HIV-1 and Murine Leukemia Virus in Rodent Cells and Is Resistant to Antagonists from Primate Viruses

Author:

Goffinet Christine1,Schmidt Sarah1,Kern Christian1,Oberbremer Lena1,Keppler Oliver T.1

Affiliation:

1. Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany

Abstract

ABSTRACT Human CD317 (BST-2/tetherin) is an intrinsic immunity factor that blocks the release of retroviruses, filoviruses, herpesviruses, and arenaviruses. It is unclear whether CD317 expressed endogenously in rodent cells has the capacity to interfere with the replication of the retroviral rodent pathogen murine leukemia virus (MLV) or, in the context of small-animal model development, contributes to the well-established late-phase restriction of human immunodeficiency virus type 1 (HIV-1). Here, we show that small interfering RNA (siRNA)-mediated knockdown of CD317 relieved a virion release restriction and markedly enhanced the egress of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) in rat cells, including primary macrophages. Moreover, rodent CD317 potently inhibited MLV release, and siRNA-mediated depletion of CD317 in a mouse T-cell line resulted in the accelerated spread of MLV. Several virus-encoded antagonists have recently been reported to overcome the restriction imposed by human or monkey CD317, including HIV-1 Vpu, envelope glycoproteins of HIV-2 and Ebola virus, Kaposi's sarcoma-associated herpesvirus K5, and SIV Nef. In contrast, both rat and mouse CD317 showed a high degree of resistance to these viral antagonists. These data suggest that CD317 is a broadly acting and conserved mediator of innate control of retroviral infection and pathogenesis that restricts the release of retroviruses and lentiviruses in rodents. The high degree of resistance of the rodent CD317 restriction factors to antagonists from primate viruses has implications for HIV-1 small-animal model development and may guide the design of novel antiviral interventions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3