The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter

Author:

Ferran M C1,Lucas-Lenard J M1

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA.

Abstract

In cells infected by wild-type (wt) vesicular stomatitis virus (VSV) Indiana, host transcription is severely inhibited. DNA cotransfection studies have implicated the VSV matrix (M) protein in this process (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). The M protein inhibited transcription not only from viral promoters in plasmids but also from the chromosomally integrated human immunodeficiency virus type 1 (HIV-1) provirus promoter (S.-Y. Paik, A. C. Banerjea, G. G. Harmison, C.-J. Chen, and M. Schubert, J. Virol. 69:3529-3537, 1995). In this study, we investigated the effect of wt VSV M protein on expression of a reporter gene under control of a cellular promoter (beta-interferon [IFN-beta] promoter), using double transient transfections in BHK and COS-1 cells. The cellular IFN-beta promoter was as susceptible to the inhibitory effect of the M protein as the viral promoters used previously. Viral proteins N, P, and G had no significant effect on reporter gene expression. The M protein gene from VSV mutant T1026R1, which is defective in host transcription inhibition, was cloned and sequenced, and its effect on reporter gene expression was tested. The mutant M protein had a methionine-to-arginine change at position 51 in the protein sequence and did not inhibit transcription from either the IFN-beta promoter or viral promoters. This VSV mutant is a good inducer of IFN, as opposed to the wt virus, which suppresses IFN induction. These results show that the M protein inhibits transcription from cellular as well as viral promoters and that the M protein does not regulate the IFN promoter any differently from viral promoters. While the M protein may play a role in IFN gene regulation, other viral or cellular factors that provide specificity to the induction process must also be involved.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3