Computational prediction of intracellular targets of wild-type or mutant vesicular stomatitis matrix protein

Author:

Morris Matthew C.,Russell Thomas M.,Lyman Cole A.ORCID,Wong Wesley K.,Broderick GordonORCID,Ferran Maureen C.ORCID

Abstract

The matrix (M) protein of vesicular stomatitis virus (VSV) has a complex role in infection and immune evasion, particularly with respect to suppression of Type I interferon (IFN). Viral strains bearing the wild-type (wt) M protein are able to suppress Type I IFN responses. We recently reported that the 22–25 strain of VSV encodes a wt M protein, however its sister plaque isolate, strain 22–20, carries a M[MD52G] mutation that perturbs the ability of the M protein to block NFκB, but not M-mediated inhibition of host transcription. Therefore, although NFκB is activated in 22–20 infected murine L929 cells infected, no IFN mRNA or protein is produced. To investigate the impact of the M[D52G] mutation on immune evasion by VSV, we used transcriptomic data from L929 cells infected with wt, 22–25, or 22–20 to define parameters in a family of executable logical models with the aim of discovering direct targets of viruses encoding a wt or mutant M protein. After several generations of pruning or fixing hypothetical regulatory interactions, we identified specific predicted targets of each strain. We predict that wt and 22–25 VSV both have direct inhibitory actions on key elements of the NFκB signaling pathway, while 22–20 fails to inhibit this pathway.

Funder

National Cancer Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Antiviral actions of interferon interferon-regulated cellular proteins and their surprisingly selective antiviral activities;CE Samuel;Virology,1991

2. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses;A. García-Sastre;Virology,2001

3. Analysis of VSV mutant with attenuated cytopathogenicity: Mutation in viral function, P, for inhibition of protein synthesis;CP Stanners;Cell,1977

4. A time-resolved molecular map of the macrophage response to VSV infection;RK Kandasamy;npj Syst Biol Appl,2016

5. Systems Analysis of a RIG-I Agonist Inducing Broad Spectrum Inhibition of Virus Infectivity;ML Goulet;PLoS Pathog,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3