The NEF4 Complex Regulates Rad4 Levels and Utilizes Snf2/Swi2-Related ATPase Activity for Nucleotide Excision Repair

Author:

Ramsey Kerrington L.1,Smith Joshua J.1,Dasgupta Arindam1,Maqani Nazif1,Grant Patrick1,Auble David T.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733

Abstract

ABSTRACT Nucleotide excision repair factor 4 (NEF4) is required for repair of nontranscribed DNA in Saccharomyces cerevisiae . Rad7 and the Snf2/Swi2-related ATPase Rad16 are NEF4 subunits. We report previously unrecognized similarity between Rad7 and F-box proteins. Rad16 contains a RING domain embedded within its ATPase domain, and the presence of these motifs in NEF4 suggested that NEF4 functions as both an ATPase and an E3 ubiquitin ligase. Mutational analysis provides strong support for this model. The Rad16 ATPase is important for NEF4 function in vivo, and genetic analysis uncovered new interactions between NEF4 and Rad23, a repair factor that links repair to proteasome function. Elc1 is the yeast homologue of a mammalian E3 subunit, and it is a novel component of NEF4. Moreover, the E2s Ubc9 and Ubc13 were linked to the NEF4 repair pathway by genetic criteria. Mutations in NEF4 or Ubc13 result in elevated levels of the DNA damage recognition protein Rad4 and an increase in ubiquitylated species of Rad23. As Rad23 also controls Rad4 levels, these results suggest a complex system for globally regulating repair activity in vivo by controlling turnover of Rad4.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3