Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA

Author:

Auble D T1,Wang D1,Post K W1,Hahn S1

Affiliation:

1. Department of Biochemistry, University of Virginia Health Science Center, Charlottesville 22908, USA. dta4n@virginia.edu

Abstract

MOT1 is an essential Saccharomyces cerevisiae protein and a member of the SNF2/SWI2 family of ATPases. MOT1 functions by removing TATA-binding protein (TBP) from DNA, and as a consequence, MOT1 can regulate transcription both in vitro and in vivo. Here we describe the in vivo and in vitro activities of MOT1 deletion and substitution mutants. The results indicate that MOT1 is targeted to TBP both in vitro and in vivo via amino acids in its nonconserved N terminus. The conserved C-terminal ATPase of MOT1 appears to contribute to TBP-DNA complex recognition in the absence of ATP, but it appears to function primarily during the actual ATP-dependent dissociation reaction. Chimeric proteins in which homologous portions of SNF2/SWI2 have been substituted for the MOT1 ATPase can bind to TBP-DNA complexes but fail to dissociate these complexes in the presence of ATP, suggesting that the specificity of action of MOT1 is also conferred by the C-terminal ATPase. ATPase assays demonstrate that the MOT1 ATPase is activated by TBP. Thus, MOT1 undergoes at least two conformational changes: (i) an allosteric effect of TBP that mediates the activation of the MOT1 ATPase and (ii) an ATP-driven "power stroke" that causes TBP-DNA complex dissociation. These results provide a general framework for understanding how members of the SNF2/SWI2 protein family use ATP to modulate protein-DNA interactions to regulate many diverse processes in cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3